
EECS 482 Introduction to Operating Systems
Spring/Summer 2020

Lecture 6: Semaphores

Based on slides by Harsha V. Madhyastha

Nicole Hamilton
https://web.eecs.umich.edu/~nham/

nham@umich.edu

https://web.eecs.umich.edu/%7Enham/
mailto:nham@umich.edu

Project 2 is out
Implement a thread library

Create threads
Switch between threads
Manage interactions (locks and CVs)
Optionally schedule threads on multiple CPUs

Lectures next week will begin to tell you how to do the project.
Go over spec and handout code before then.

2

Recap
Multi-threaded code with monitors:

Locks for mutual exclusion
Condition variables for ordering constraints

Every thread is in one of the following states:
Running outside any critical section
Running inside a critical section
Waiting on a mutex to enter a critical section
Waiting on a cv inside a critical section

3

Semaphores
Generalized lock/unlock.

A non-negative integer
initialized to user-specified
value and two operations:

down() waits for the value to
become positive and
atomically decrements it.

up() increments the value
atomically.

4

void down()
{
// Wait for semaphore value
// to become positive, then
// decrement value by 1.

while (true)
if (value > 0)

{
value--;
break;
}

}

void up()
{
value++;
}

Atomic

Atomic

5

Two types of semaphores
Mutex semaphore (or binary semaphore)

Represents single resource (critical section)
Up() atomically sets value to 1

Counting semaphore (or general semaphore)
Represents a resource with many units, or a resource
that allows concurrent access (e.g., reading)
Multiple threads can up/down the semaphore

Uses of Semaphores
Mutual exclusion

6

semaphore sem(0);

// Thread A
do task
sem.up();

// Thread B
sem.down();
continue execution;

semaphore sem(1);
sem.down();
critical section;
sem.up();

Ordering constraints
Example: thread B wants to
wait for thread A to finish.

Coke machine with semaphores

As before, think about shared data, mutual exclusion,
and before-after relations
Assign semaphore for each:

mutex: for exclusive access to coke machine

fullSlots: before removing a coke, cokes > 0
Counts filled slots in machine

emptySlots: before adding a coke, cokes < MAX
Counts free spaces in the machine

7

8

producer()
{
// wait for empty slot
emptySlots.down();

mutex.down();
Add coke to machine;
mutex.up();

// note a full slot
fullSlots.up();
}

Coke machine with semaphores

consumer()
{
// wait for full slot
fullSlots.down();

mutex.down();
Take coke from machine;
mutex.up();

// note an empty slot
emptySlots.up();
}

// Initialization
Semaphore mutex = 1;
Semaphore emptySlots = N;
Semaphore fullSlots = 0;

Coke machine with monitors
Consumer()

{
// wait for full slot
cokeLock.lock();
while (numCokes == 0)

waitingConsumers.wait(
&cokeLock);

Take coke from machine;
numCokes--

// note an empty slot
waitingProducers.signal();
cokeLock.unlock();
}

9

Producer()
{
// wait for empty slot
cokeLock.lock();
while (numCokes == MAX)

waitingProducers.wait(
&cokeLock);

Add coke to machine;
numCokes++;

// note a full slot
waitingConsumers.signal();
cokeLock.unlock();
}

Questions
1. What if there’s 1 full slot, and

multiple consumers call down() at
the same time?

2. Why do we need different
semaphores for fullSlots and
emptySlots?

3. Does the order of down() calls
matter?

4. Does the order of up() calls matter?

5. What if a context switch happens
between emptySlots.down() and
mutex.down()?

6. What if fullSlots.up() before
mutex.down()?

10

producer()
{
// wait for empty slot
emptySlots.down();

mutex.down();
Add coke to machine;
mutex.up();

// note a full slot
fullSlots.up();
}

consumer()
{
// wait for full slot
fullSlots.down();

mutex.down();
Take coke from machine;
mutex.up();

// note an empty slot
emptySlots.up();
}

11

Readers/Writers with Semaphores

Use three variables
integer readcount – number of threads reading
Semaphore mutex – control access to readcount
Semaphore w_or_r – write-mode or read-mode

12

// number of readers
int readcount = 0;
// mutual exclusion to readcount
Semaphore mutex = 1;
// write-mode or read-mode
Semaphore w_or_r = 1;

writer
{
w_or_r.down();
Write;
w_or_r.up();
}

Readers/Writers with Semaphores

reader
{
mutex.down();
readcount++;
if (readcount == 1)

w_or_r.down();
mutex.up();
Read;
mutex.down();
readcount--;
if (readcount == 0)

w_or_r.up();
mutex.up();
}

13

Questions

reader
{
mutex.down();
readcount++;
if (readcount == 1)

w_or_r.down();
mutex.up();
Read;
mutex.down();
readcount--;
if (readcount == 0)

w_or_r.up();
mutex.up();
}

writer
{
w_or_r.down();
Write;
w_or_r.up();
}

1. Why don’t writers use mutex?

2. If a writer is writing, where will readers
be waiting?

3. Once a writer exits, which reader gets
to go first?

4. Is it guaranteed that all readers will fall
through?

5. What if mutex.up() is above “if
(readcount == 1)”?

6. If read in progress when writer arrives,
when can writer get access?

Monitors vs. Semaphores
Semaphores: 1 mechanism for both mutual exclusion and
ordering

Elegant
Can be difficult to use

Monitor lock = binary semaphore (initialized to 1)
lock() = down()
unlock() = up()

14

Condition variable versus
semaphore

Condition variable Semaphore

while(cond) {wait();} down()

Can safely handle spurious wakeups No spurious wakeups

Conditional code in user program;
more flexible

Conditional code in semaphore
definition (wait if value == 0)

User provides shared variable;
protects with lock

Semaphore provides shared variable
(integer) and thread-safe operations
on that variable (down, up)

No memory of past signals Remembers past up calls

15

T1: wait()
T2: signal()
T3: signal()
T4: wait()

T1: down()
T2: up()
T3: up()
T4: down()

Implementing custom waiting
condition with semaphores

Semaphores work best if the shared integer and waiting
condition (value==0) map naturally to problem domain

How to implement custom waiting condition with semaphores?

16

Producer-consumer with monitors
Consumer()

{
cokeLock.lock();

while (numCokes == 0)
waitingConsumers.wait(

&cokeLock);

take coke out of machine;
numCokes--;

waitingProducers.signal();

cokeLock.unlock();
}

17

Producer()
{
cokeLock.lock();

while (numCokes == MAX)
waitingProducers.wait(

&cokeLock);

add coke to machine;
numCokes++;

waitingConsumers.signal();

cokeLock.unlock();
}

Producer-consumer with semaphores,
monitor style

18

Consumer()
{
mutex.down()
while (numCokes == 0)

{

go to sleep;

}
take coke out of machine;
numCokes--;

wake up any waiting producer;

mutex.up();
}

Producer()
{
mutex.down()
while (numCokes == MAX)

{

go to sleep;

}
add coke to machine
numCokes++

wake up any waiting consumer;

mutex.up();
}

Producer-consumer with semaphores,
monitor style

19

Consumer()
{
mutex.down()
while (numCokes == 0)

{
semaphore s = 0;
waitingConsumers.push(&s);
mutex.up();
s.down();
mutex.down();
}

take coke out of machine;
numCokes--;
if (!waitingProducers.empty())

{
waitingProducers.front()->up();
waitingProducers.pop();
}

mutex.up();
}

Producer()
{
mutex.down()
while (numCokes == MAX)

{
semaphore s = 0;
waitingProducers.push(&s);
mutex.up();
s.down();
mutex.down();
}

add coke to machine
numCokes++
if (!waitingConsumers.empty())

{
waitingConsumers.front()->up();
waitingConsumers.pop();
}

mutex.up();
}

Exercise to try …

Convert monitor-style reader/writer lock implementation
to use semaphores

20

	EECS 482 Introduction to Operating Systems�Spring/Summer 2020�Lecture 6: Semaphores
	Project 2 is out
	Recap
	Semaphores
	Two types of semaphores
	Uses of Semaphores
	Coke machine with semaphores
	Coke machine with semaphores
	Coke machine with monitors
	Questions
	Readers/Writers with Semaphores
	Readers/Writers with Semaphores
	Questions
	Monitors vs. Semaphores
	Condition variable versus semaphore
	Implementing custom waiting condition with semaphores
	Producer-consumer with monitors
	Producer-consumer with semaphores,�monitor style
	Producer-consumer with semaphores,�monitor style
	Exercise to try …

